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Abstract. We study a simple learning model based on the Hebb rule to cope with ‘delayed’,
unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence
to asymptotically perfect generalization is observed, with a rate depending, however, in a non-
universal way on learning parameters. Asymptotic convergence can be as fast as that of Hebbian
learning, but may be slower. Morever, for a certain range of parameter settings, it depends on initial
conditions whether the system can reach the regime of asymptotically perfect generalization, or
rather approaches a stationary state of poor generalization.

1. Introduction

Introducing biologically motivated features in models for learning usually has a double role:
testing hypotheses for natural learning and finding hints for artificial learning. These problems
can be stated at various sophistication levels. Here we do not take the more ambitious point of
view of describing the complexity of the former or of finding optimal algorithms for the latter.
On the contrary, our motivation is to investigate which are the capabilities of very elementary
mechanisms.

One urgent problem with which a system, either natural or artificial, may be confronted
when trying to improve its performance is to learn only from the final success/failure of aseries
of consecutive decisions. The typical situation we may consider is that of an ‘agent’ which
let free in a complicated ‘landscape’ tries many ‘paths’ to reach a ‘goal’ and has to optimize
its path (a local problem) knowing only the ‘time’ (or cost) it needs to reach the goal (global
information). Here ‘goal’ may be a survival interest or the solution of a problem, ‘path’ a series
of moves or of partial solution steps in a complex geographical or mathematical ‘landscape’
etc. The problem we want to approach here is to find out whether there are elementary features
characterizing learning under suchunspecificreinforcement conditions. From the point of
view of reinforcement learning our problem may be seen under the ‘class III’ problems in the
classification of Hertzet al [1]. However, we stress that our attitude is not that of finding good
algorithms for tackling special problems, like movement, control or games—see, e.g., [2]. For
this reason we do not consider evolved algorithms from the class of Q-learning [3], of learning
using temporal differences [4], agent and critic [5] etc, but we restrict ourselves to the most
primitive algorithms which we may think of having a chance to have developed under natural
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conditions. On the other hand, if such algorithms prove capable of tackling the problem they
may well give further insights†.

In the case of neural network systems the usual situation lacks detailed control over the
synapses and learning is achieved by confronting the ‘pupil’ system with the correct answer
after each presentation of a pattern. For perceptrons both the unsupervised Hebb rule and the
supervised perceptron algorithm are known to lead to an asymptotically perfect generalization,
although with different asymptotic laws. In our problem setting, however, the pupil never
knows the right answer to each question, but only the average error it makes over many tests.
In previous work concerned with this problem [7] (see also [8]) we presented an analysis of
a two-step algorithm based on the Hebb rule for perceptrons and used computer simulations
and a rough approximation to estimate the convergence conditions. In the present work we
undertake a detailed study of this learning algorithm which we call for simplicity ‘association-
reinforcement(AR)-Hebb rule’. This algorithm introduces two learning parameters and we
find that its generalization behaviour is highly non-trivial: in the pre-asymptotic region and
depending on the network parametersfixed pointsof the learning dynamics may appear. This
leads either to asymptotically perfect generalization with non-universal power laws depending
on the (ratio of the) learning parameters, or to stationary states of very poor generalization,
according to the network parameters and initial conditions.

That this AR-Hebb algorithm may be of a more general interest is suggested by applying
it to a concrete problem of optimizing paths in a landscape with obstacles and traps, in a neural
network recasting of [6]; this study will be presented elsewhere (partial results have been given
in [7]).

In the next section we shall introduce the problem and the algorithm, and in section 3 we
shall present results from numerical simulations. In section 4 we shall study a coarse-grained
approximation which is appropriate for large networks (‘thermodynamic limit’). Section 5 is
reserved for conclusions.

2. Learning rule for perceptrons under unspecific reinforcement

We consider perceptrons with Ising unitss, si = ±1 and real weights (synapses)Ji :

s = sign

(
1√
N

N∑
i=1

Jisi

)
= sign

(
1√
N
J · s

)
. (1)

HereN is the number of input nodes, and we put no explicit thresholds. The network (pupil)
is presented with a series of patternsξ (q,l)i , q ∈ N, l = 1, . . . , L to which it answers with
s(q,l). A training period consists of the successive presentation ofL patterns. The answers are
compared with the corresponding answerst (q,l) of a teacher with pre-given weightsBi and the
average error made by the pupil over one training period is calculated:

eq = 1

2L

L∑
l=1

|t (q,l) − s(q,l)|. (2)

The training algorithm consists of two parts:

(a) A ‘blind’ Hebb-typeassociationat each presentation of a pattern:

J (q,l+1) = J (q,l) +
a1√
N
s(q,l)ξ(q,l) (3)

† An illustration of the problem was provided in an early paper [6] dealing with these questions in the simulation of
a device moving on a board.
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(b) An ‘unspecific’ but gradedreinforcementproportional to the average erroreq introduced
in (2), also Hebbian, at the end of each training period,

J (q+1,1) = J (q,L+1) − a2√
N
eq

L∑
l=1

s(q,l)ξ(q,l). (4)

Because of these two steps we call this algorithm ‘AR-Hebb rule’ (or ‘two-Hebb rule’ [7]).
We are interested in the behaviour with the number of iterationsq of the generalization error
εg(q):

εg(q) = 1

π
arccos

(
J ·B
|J | |B|

)
. (5)

The training patternsξ(q,l) are generated randomly, and are taken to be unbiased in the
present paper. The case of structured patterns is more complicated, and will be dealt with in a
separate publication [9]. We shall test whether the behaviour ofεg(q) follows a power law at
largeq:

εg(q) ' constq−p. (6)

Notice the following features:

(a) During training the pupil only uses its own associationsξ(q,l) ↔ s(q,l) and the average
erroreq which does not refer specifically to the particular stepsl.

(b) Since the answerss(q,l) are made on the basis of the instantaneous weight valuesJ (q,l)

which change at each step according to equation (3), the series of answers form a correlated
sequence with each step depending on the previous one. Therefore,eq in fact measures
the performance of a ‘path’, an interdependent set of decisions.

(c) ForL = 1 the algorithm reproduces the usual ‘perceptron rule’ (fora1 = 0) or to the usual
‘unsupervised Hebb rule’ (fora2 = 2a1) for on-line learning, for which the corresponding
asymptotic behaviour is known [10,11].

3. Numerical results

In a preliminary analysis [7] we have tested various combinations ofL = 1, 5, 10, 15 and
N = 50, 100, 200, 300. We went withq up to 4× 105. We found the convergence of the
learning procedure to depend on the ratioa1/a2, in particular no convergence was found forLof
5 and higher if this ratio was decreased significantly below 0.2. For fixeda1, a2 the asymptotic
behaviour withq appeared well reproduced by a power law andthe exponent was found to
depend onL. ForL = 1 varyinga1/a2 between 0 and12 interpolates between perceptron and
Hebbian learning, for ratios larger than 1 new asymptotic behaviour can be expected to show
up (see section 4)—we did not perform a systematic numerical analysis forL = 1, however.

In the present, more precise analysis we useL = 5, 10 andN = 100, 300, rising to
8× 105 iterations. We introduce:

α = qL/N. (7)

We present here results for the following choices of parameters:

a2 = 0.012 (8)

(a) a1 = a2/20 (9)

(b) a1 = a2/5 (10)

(c) a1 = a2/5 for α < 100L

a1 = a2/(2L) for α > 100L
(11)
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(d) a1 = a2/5 for α < 100L

a1 = 0 for α > 100L.
(12)

We use random initial conditions with the same normalization for the teacher and pupil weights,
B2/N = J2/N = 1. The results are shown in figure 1. In agreement with the preliminary
results of [7] we find no convergence in case(a) and convergence in case(b). If a certain
threshold inεg is achieved, switching to a smaller ratioa1/a2 is seen to accelerate the asymptotic
convergence—case(c)—but even thena1 cannot be set to zero—case(d). Similar behaviour
is observed for otherN andL > 5.

This intriguing behaviour provoked us to try to obtain analytic understanding by using the
coarse-grained analysis discussed in the next section.

4. Coarse-grained analysis

We combineblind association(3) during a learning period ofL elementary steps and the
gradedunspecific reinforcement(4) at the end of each learning period into one coarse-grained
step

J (q+1,1) = J (q,1) +
1√
N
(a1− a2eq)

L∑
l=1

sign(J (q,l) · ξ(q,l))ξ(q,l) (13)

eq = 1

2L

L∑
l=1

| sign(B · ξ(q,l))− sign(J (q,l) · ξ(q,l))|. (14)

We introduce the notations

R̂(q, l) = 1

N
B · J (q,l) Q̂(q, l) = 1

N
[J (q,l)]2 (15)

and we normalize the teacher weights to 1, i.e.B2/N = 1. In the ‘thermodynamic limit’
L/N → 0 one can treatα as a continuous variable. We shall follow standard procedures
[1, 11–13] and obtain the following expressions for the changes ofR̂ andQ̂ over a coarse-
grained step:

L
d

dα
R̂ = 1√

N
(a1− a2eq)

L∑
l=1

sign(J (q,l) · ξ(q,l))(B · ξ(q,l)) (16)

L
d

dα
Q̂ = 2√

N
(a1− a2eq)

L∑
l=1

sign(J (q,l) · ξ(q,l))(J (q,l) · ξ(q,l))

+
1

N
(a1− a2eq)

2

( L∑
l=1

sign(J (q,l) · ξ(q,l))ξ(q,l)
)2

. (17)

In the following we shall consider unbiased random input-patterns with

〈ξ (l,q)i ξ
(k,r)
j 〉 = δij δlkδqr . (18)

The local fields:

h
(q,l)

J = 1√
N
J (q,l) · ξ(q,l) h

(q,l)

B = 1√
N
B · ξ(q,l) (19)

are then normally distributed with second moments

〈(h(q,l)J )2〉 = 〈Q̂(q, l)〉 = Q 〈(h(q,l)B )2〉 = 1 〈(h(q,l)J h
(q,l)

B )〉 = 〈R̂(q, l)〉 = R. (20)
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(a)

(b)

Figure 1. Generalization errorεg versusα forN = 100,L = 5 andL = 10 (a), (b) andN = 300,
L = 5 andL = 10 (c), (d), for the algorithms (a)–(d) of equations (9)–(12). The lines indicate
the expected asymptotic behaviour as suggested by the coarse-grained approximation discussed in
section 4 for the correspondinga1/a2 ratio, as well as two further power laws for illustration.
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(c)

(d)

Figure 1. (Continued.)
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Their joint probability density is thus given by

p(hJ , hB) = 1

2π
√
1

exp

(
− 1

21
(Qh2

B − 2RhJhB + h2
J )

)
(21)

with

1 = Q− R2. (22)

In the thermodynamic limitN → ∞, the self-overlap of the learner̂Q and its overlapR̂
with the teacher are self-averaging, so that their evolution equations (16), (17) can be directly
rewritten in terms of evolution equations for their averages. Moreover, these averagesQ and
R become smooth functions on theα-scale, so that we can neglect the dependence ofR and
Q on l in (21) when used to perform averages on the right-hand sides of (16) and (17), as it
would only produceO(1/N) corrections to the evolution equations, which become negligible
asN →∞. One thus obtains
dR

dα
=
√

2

π

[
a1

R√
Q
− a2

2

(
R√
Q
− 1

L
−
(

1− 1

L

)
P
R√
Q

)]
(23)

dQ

dα
= 2

√
2

π

[
a1

√
Q− a2

2

(√
Q− R

L
−
(

1− 1

L

)
P
√
Q

)]
+

[
a2

1 − a1a2(1− P) +
a2

2

4

(
1− 2P +

1

L
+

(
1− 1

L

)
P 2

)]
(24)

where

P = − 1

π
√
1

∫ ∞
−∞

e−
1
2x

2
sign(x)

∫ ∞
Rx

dye−
1

21 y
2

= 1− 2

π
arccos

(
R√
Q

)
. (25)

The generalization error is

εg = 1

π
arccos

(
R√
Q

)
. (26)

We may formally eliminate one of the learning parameters by rescaling our quantities by the
parametera2:

R = Ra2 Q = Qa2
2 λ = a1

a2
. (27)

We then obtain
dεg
dα
= − 1√

2ππL
√
Q

sin(πεg) +
1

2πQ
cotg(πεg)

(
λ2 −

(
2λ− 1

L

)
εg +

(
1− 1

L

)
ε2
g

)
(28)

d
√
Q

dα
=
√

2

π

(
λ−

(
1− 1

L

)
εg − 1

2L
(1− cos(πεg))

)
+

1

2
√
Q

(
λ2 −

(
2λ− 1

L

)
εg +

(
1− 1

L

)
ε2
g

)
. (29)

To establish the asymptotic behaviour we look for solutions of equations (28), (29) in the
limit of small εg, largeQ. To leading order (forλ > 0), these equations become

dεg
dα
' − εg√

2πL
√
Q

+
λ2

2π2Qεg
(30)

d
√
Q

dα
'
√

2

π
λ (31)
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which can be solved exactly to give

ε2
g '

λ√
2ππ( 1

λL
− 1)

Q−1/2 + c1Q−
1

2λL for λ 6= 1

L
(32)

ε2
g '

(
1

π
√

2πL
lnQ1/2 + c2

)
Q−1/2 for λ = 1

L
(33)

i.e. explicitly

ε2
g '

1

2π( 1
λL
− 1)

α−1 + c̃1α
− 1
λL for λ 6= 1

L
(34)

ε2
g '

(
1

2π
ln α + c̃2

)
α−1 for λ = 1

L
(35)

Q ' 2

π
λ2α2 (36)

asymptotically at largeα.
We see that forλ < 1

L
we obtain asymptotically perfect generalization, the dominant term

exhibiting the usual power− 1
2 (and, forL = 1,λ = 0.5, also the usual coefficient [11]), while

for λ > 1
L

the second term in (32), (34) dominates and again ensures perfect generalization
but with a different power law,−1/(2λL). Forλ = 1

L
we obtain logarithmic corrections—see

equations (33), (35). Notice that these results also hold forL = 1.
In the caseλ = 0 one can see from (28), (29) that starting with any finiteQ one cannot

have perfect generalization forL > 1. ForL = 1 one re-obtains the asymptotic behaviour
found in [10].

There is, however, a non-trivial pre-asymptotic region, which turns out to be dominated
by two stationarity conditions, one for the self-overlap, dQ/dα = 0, and one for the overlap
with the teacher-configuration, dR/dα = 0 or, alternatively, that for the generalization error
dεg/dα = 0. For suitable values of the network parameters, the two stationarity conditions
may simultaneously be satisfied, leading to fixed points of the learning dynamics, one of these
fully stable and with poor generalization, the other partially stable.

To this pre-asymptotic region we shall now turn our attention and thereby also obtain
further specifications for the parameters. In figure 2 we show the evolution ofεg andQ
according to equations (28), (29), starting fromεg(0) = 0.5 and variousQ(0) = Q0†. The
various trajectories are parametrized byλ. In all cases there is a critical valueλc(Q0) which
separates flows toward a stationary state of poor generalization from flows toward perfect
asymptotic generalization. The fixed point in theQ, εg plane (with a location parametrized
by λ) which is responsible for this behaviour has an attractive and a repulsive direction. For
a given initial conditionQ0, the critical valueλc(Q0) is defined as that value for which the
attractive manifold connects the initial condition to the partially stable fixed point; for smaller
values ofλ the flow always is from the initial condition to the fully stable fixed point with
poor generalization, for slightly larger values ofλ the flow is towards asymptotically perfect
generalization. At still larger values ofλ the two fixed points eventually coalesce and disappear
altogether. Then we always have asymptotically perfect generalization. Some values for
λc(Q0) are given in table 1.

In figure 3 we describe the flow in this plane for a givenλ, this should be compared with
theα-trajectories in theQ, εg plane for variousλ with different starting pointsQ0, figure 2.

† Notice that due to (27) the dependence on the initial conditionsQ0 may be translated into a dependence on the
learning rate for the initial network: for a fixed ratioλ of learning rates, and given values of the original overlapsQ

andR, finer updating (smallera1 anda2) is equivalent to larger values of rescaled overlaps, hence a larger value of
Q0.
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(a)

(b)

Figure 2. Evolution of the generalization errorεg (vertical axis) and of
√
Q (horizontal axis) at

L = 10 for variousλ (a) and starting pointsQ(0) (b).
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(a)

(b)

Figure 3. Flow in the planeεg , Q. The dot-dashed curve corresponds to stationarity condition
dεg/dα = 0, the dashed curve to dQ/dα = 0. (a) L = 10,λ = 0.075; two fixed points (one all
stable, one partially stable) clearly show up, the full curves represent the stable and the unstable
manifolds of the partially stable fixed point. (b) L = 5, λ = 0.2, a parameter setting for which
there are no fixed points. For every starting point we have convergence to perfect generalization.
(Cf also figure 2.)
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Table 1. Critical value ofλ for L = 10 and various initial conditions.
√
Q0 1 10 100 1000 10 000

λc(Q0) 0.2545(5) 0.2185(5) 0.1385(5) 0.0875(5) 0.0485(5)

In figure 4 we directly plotεg(α). As can be seen from all these figures, forλ < λc the
training leads to an initial improvement which is, however, limited and followed by a very
rapid deterioration toward confusion. Forλ > λc, in contrast, the learning stabilizes and
leads to asymptotically perfect generalization with aλ-dependent power law in agreement
with equations (34), (35).

These analytic results compare very well with the numerical results given in the previous
section, both in the pre-asymptotic and in the asymptotic region (cf figure 1).

5. Summary and discussion

In the present paper we have investigated a two-phase learning algorithm for perceptrons,
named the AR-Hebb algorithm. Its first phase consists of a series of Hebb-type synaptic
modifications, correlating, however, input andself-computedoutput (blind association) rather
than input and clamped teacher output. This first phase is followed by an unspecific but graded
reinforcement-type learning step which leads to a partial reversal of the previous series of
Hebb-type synaptic modifications, depending on current average success rates.

Our main motivation has been biological, attempting to honour the observation that a
learner’s control over its neurons and synapses might be less specific and direct than ordinary
supervised learning algorithms usually presume, while basically adhering to the Hebbian
learning paradigm.

Our central results can be stated as follows:

(i) Despite the fact that feedback on the learner’s performance enters its learning dynamics
only in an unspecificway in that it cannot be associated with a single identifiable
correct or incorrect associations, convergence of the AR-Hebb algorithm in the sense
of asymptotically perfect generalizationis observed.

(ii) For given initial conditions, this convergence depends on the parameters of the algorithm;
in particular none of these parameters can be set to zero. Alternatively, at fixedL and the
ratio of the algorithm parameters convergence may depend on initial conditions.

In the details the dynamics of this algorithm was found to be unexpectedly complex.
Depending on the parameters, fixed points in the dynamic flow may emerge—one stable, the
other only partially stable. The attracting manifold of the latter constitutes a separatrix dividing
initial states into two sets, one for which the algorithm converges, and another for which it does
not in which case the flow is driven to the all-stable fixed point with poor generalization. Seen
from a different point of view, agiven initial condition(given updating speed) may be found
to belong to the asymptotically converging lot, or to end up in a state of poor generalization,
depending on network parameters.

On the other hand, parameter settings may be varied in such a way that the two fixed
points eventually coalesce and disappear, rendering convergence of the algorithm independent
of initial conditions. The pre-asymptotic regime of the learning process is then still influenced
by the lines in theεg–Q plane along which either dεg/dα or dQ/dα (but not both) vanish.

Much to our surprise, theconvergence rateof the algorithm was found to depend in a
non-universal manneron the ratio of learning parameters. In spite of the non-specific nature
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(a)

(b)

Figure 4. Generalization errorεg versusα at L = 10 for variousλ and for starting point
Q(0) = 1000. The straight lines in (a) show the dominant asymptotic behaviour for the
correspondingλ from (34), (35) (notice that forλ 6 1/L the normalization is fixed; forλ 6 1/Lwe
also give a fit using the subdominant terms in (34), (35)). (b) Amplified view at the pre-asymptotic
region.
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of the information feedback on the learning dynamics, convergence can be as fast as that of
Hebbian learning,εg ∼ α−1/2, if λL < 1, whereas it is slower and exhibits a non-universal
parameter dependent rate,εg ∼ α−1/2λL, if λL > 1. Logarithmic corrections appear in the
marginal caseλL = 1.

One may ask oneself, why there is no generalization for a perceptron-type algorithmλ = 0
(i.e., a1 = 0). We can offer a simple observation which may be of heuristic value: since for
L = 1 eq can only be 0 or 1a1 = 0 means penalty for failure, no change for success, i.e. the
usual perceptron learning rule known to converge. However, forL > 1 eq can take fractional
values in the interval [0, 1]. In this casea1 = 0 means penalty for all answers which are short
of perfect, i.e. even if the pupil is successful in far above 50% of the cases. This procedure
can turn out to be destructive.

To put our findings into a broader perspective, it is perhaps appropriate to note that a similar
kind of unspecific information feedback as in our setup occurs in committee-machine learning.
While in our case, information feedback is unspecific in time (with respect to the pattern labels
within a longer series on which the learner may have been in error), unspecificity in the
committee machine refers to space, i.e., the label(s) of the node(s) which may have contributed
to a wrong output upon presentation of a single pattern. In the details, though, the way in
which unspecific feedback is utilized in the dynamics is different in the two setups, leading to
different asymptotic laws, and to different behaviour in the pre-asymptotic regime. Although
plateaus in the learning dynamics occur in both setups, this similarity is superficial. Whereas
in the committee machine, the appearance of plateaus is related to a permutation symmetry of
the nodes and escape therefrom to its breaking (a transition to specialization), there is strictly
speaking no time-translation symmetry within a coarse-grained step, and no breaking thereof,
as each coarse-grained step constitutes a whole correlated path of events during which the
learner already evolves in response to the patterns presented. Quantitatively the difference
manifests itself in the fact that plateaus in our setup have a much higher generalization error
than those in the committee machines, and that the AR-Hebb rule may converge to a state
of poor generalization even if its its initial performance is almost perfect (as can be seen in
figure 3(a)). Still, it may be interesting to enquire whether techniques akin to those invented
in order to decrease the extent of plateaus in committe-machine learning (see [14] for a recent
reference) might be utilized to improve the present setup.

We have not addressed issues related to optimal parameter settings or optimal online-
control of parameters (the latter issue would in some sense run against our original biologically
minded starting point), nor have we investigated the performance of the algorithm in multi-
layer architectures so far. Clearly these may be interesting topics to pursue in future research,
as may be more detailed investigations of the algorithm as an intricate dynamical systemper se.

Note added in proof. We would like to add the following interesting observation. A variant of the present algorithm
which introduces an additional biologically motivated element of indeterminism by including patterns in the second
(reinforcement) phase of a session only with probabilityp < 1 shows qualitatively the same behaviour as the algorithm
studied in the present paper. A rough first quantitative characterization of this modification would be that it leads to an
effective rescaling of the parametera2 of the algorithm by approximately a factorp, entailing a corresponding rescaling
of the parameterλ and the scaled self-overlapQ, viz. λ → λ/p andQ → Q/p2. This leads to a corresponding
reduction of criticalλ’s for given initial conditionQ0 or, alternatively, to a reduction of the minimumQ0 required for
convergence at a givenλ. These results are well corroborated by numerical simulations.
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